The Ecological Significance of Sexual Reproduction in Peat Mosses (Sphagnum)
ثبت نشده
چکیده
Sundberg, S. 2000. The ecological significance of sexual reproduction in peat mosses (Sphagnum). Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 581. 37 pp. Uppsala. ISBN 91-554-4847-X. Peat mosses (Sphagnum) are widely distributed and are a major component of mire vegetation and peat throughout the boreal and temperate regions. Most boreal Sphagnum species regularly produce sporophytes, but the ecological role of the spore has been questioned. This study shows that the spores can form a spore bank and have the ability to germinate and contribute to moss establishment whenever suitable conditions occur. The results suggest that spore production is important for explaining the wide distribution and omnipresence of Sphagnum in nutrient-poor wetlands. The results further imply that initial recruitment from spores predominates in Sphagnum after disturbance or formation of suitable habitats. A series of experiments showed that addition of phosphorus-containing substrates, such as fresh plant litter or moose dung, resulted in spore establishment on bare, moist peat. A field experiment indicated establishment rates of about 1% of sown, germinable spores on peat with added substrates. Plant litter on moist soil, without a closed cover of bryophytes, is an important safe site for the establishment of Sphagnum spores. The results fit the observed pattern of colonisation by Sphagnum beneath Eriophorum vaginatum tussocks in mires severely disturbed by peat extraction. Successful long-distance dispersal was indicated by the occurrence of several regionally new or rare Sphagnum species in disturbed mires. Spore number per sporophyte ranged among Sphagnum species from 18 500 to 240 000, with a trade-off between spore number and spore size. Annual spore production was estimated at 15 million spores per square metre on two investigated mires. Sporophyte production showed a large interannual variation. Sporophyte production was positively related to the amount of precipitation the preceding summer. This was probably because a high water level promoted gametangium formation. Spore dispersal occurred in July and August. The earlier timing of spore dispersal in the more drought-sensitive, hollow-inhabiting sphagna should reduce the risk of sporophytes drying out prematurely during summer droughts. Spores kept refrigerated up to 13 years retained high germinability. A field experiment showed that Sphagnum can form a persistent spore bank, with a potential longevity of several decades.
منابع مشابه
Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses).
UNLABELLED PREMISE OF THE STUDY The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species a...
متن کاملSimultaneous high C fixation and high C emissions in Sphagnum mires
Peatlands play an important role in the global carbon (C) cycle due to their large C storage potential. Their C sequestration rates, however, highly vary depending on climatic and geohydrological conditions. Transitional mires are often characterised by floating peat with infiltration of buffered groundwater or surface water. Sphagnum mosses grow on top, producing recalcitrant organic matter an...
متن کاملGlasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses?
• Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments. •...
متن کاملStudies on chromium(III) removal from aqueous solutions by sorption on Sphagnum moss peat
Batch sorption experiments were performed for the removal of chromium(III) ions from aqueous solutions using Romanian Sphagnum moss peat (untreated and treated with NaCl solution) as sorbent. In order to establish the best conditions for the sorption of chromium(III), the influence of initial pH, contact time, peat dose and metal ion concentration was investigated. The Freundlich, Langmuir and ...
متن کاملSphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication
Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentrat...
متن کامل